稀疏编码(Sparse Coding)是一种数据表示方法,旨在通过少量非零元素来描述数据,提取其关键特征。在图像处理和机器学习中广泛应用,通过构建一个超完备字典,将输入数据稀疏地表示为字典基向量的线性组合。不仅捕捉了数据的内...
-
-
对抗性攻击(Adversarial Attacks)是一种安全威胁,攻击者通过在输入数据中故意添加难以察觉的扰动,诱使机器学习模型尤其是深度学习模型做出错误的预测或行为。这些攻击可以针对图像、文本或声音等多种数据类型,目的是...
-
LSTM,全称为Long Short-Term Memory,中文为“长短期记忆网络”,由Sepp Hochreiter和Jürgen Schmidhuber在1997年提出,是一种能够记住长期信息并用于未来计算的深度学习算...
-
交互式机器学习(Interactive Machine Learning, IML)是一种将人类用户纳入学习循环的主动学习范式。在交互式机器学习中,用户通过提供标签、演示、更正、排名或评估等输入与学习算法进行交互,同时观察算...
-
低秩适应(Low-Rank Adaptation, LoRA 技术允许更快、更有效地将大型语言模型适应特定的任务或领域。本文将概述LoRA是什么、主要组成、工作原理、优点和局限性,以及它的潜在应用。...
-
知识图谱(Knowledge Graph)是一种结构化的语义知识库,通过图形化的方式表达实体之间的关系。由节点(代表实体)和边(代表实体间的关系)组成,能存储和处理大量复杂数据。知识图谱使信息更易于被计算机理解和处理,广泛应...
-
语义分割(Semantic Segmentation)是一种计算机视觉技术,通过深度学习模型,尤其是卷积神经网络(CNN),对图像中的每个像素进行分类,识别和区分不同的物体和场景。语义分割能为图像中的每个像素赋予一个语义标签...
-
深度学习(Deep Learning)是机器学习的一个子集,本文介绍了什么是深度学习、深度学习的工作原理、深度学习与机器学习的区别、深度学习的开发框架以及深度学习的常见应用。...
-
神经网络架构搜索(Neural Architecture Search, NAS)是一种自动化技术,用于设计和优化深度学习模型的结构。通过智能搜索策略在巨大的网络结构空间中寻找最佳架构,以提高模型性能。神经网络架构搜索结合了...
-
自监督学习(Self-Supervised Learning)是一种机器学习技术,它使模型能从未标记的数据中学习,通过构建辅助任务生成标签来训练模型。自监督学习在自然语言处理和计算机视觉等领域尤其有用,减少了对大量标记数据集...